Hip fracture risk assessment: artificial neural network outperforms conditional logistic regression in an age- and sex-matched case control study
نویسندگان
چکیده
BACKGROUND Osteoporotic hip fractures with a significant morbidity and excess mortality among the elderly have imposed huge health and economic burdens on societies worldwide. In this age- and sex-matched case control study, we examined the risk factors of hip fractures and assessed the fracture risk by conditional logistic regression (CLR) and ensemble artificial neural network (ANN). The performances of these two classifiers were compared. METHODS The study population consisted of 217 pairs (149 women and 68 men) of fractures and controls with an age older than 60 years. All the participants were interviewed with the same standardized questionnaire including questions on 66 risk factors in 12 categories. Univariate CLR analysis was initially conducted to examine the unadjusted odds ratio of all potential risk factors. The significant risk factors were then tested by multivariate analyses. For fracture risk assessment, the participants were randomly divided into modeling and testing datasets for 10-fold cross validation analyses. The predicting models built by CLR and ANN in modeling datasets were applied to testing datasets for generalization study. The performances, including discrimination and calibration, were compared with non-parametric Wilcoxon tests. RESULTS In univariate CLR analyses, 16 variables achieved significant level, and six of them remained significant in multivariate analyses, including low T score, low BMI, low MMSE score, milk intake, walking difficulty, and significant fall at home. For discrimination, ANN outperformed CLR in both 16- and 6-variable analyses in modeling and testing datasets (p?<?0.005). For calibration, ANN outperformed CLR only in 16-variable analyses in modeling and testing datasets (p?=?0.013 and 0.047, respectively). CONCLUSIONS The risk factors of hip fracture are more personal than environmental. With adequate model construction, ANN may outperform CLR in both discrimination and calibration. ANN seems to have not been developed to its full potential and efforts should be made to improve its performance.
منابع مشابه
مقایسه قدرت پیش بینی شبکه عصبی مصنوعی با رگرسیون لجستیک چندگانه در تفکیک بیماران دیابتی رتینوپاتی از غیر رتینوپاتی
Background: Diabetes mellitus is a high prevalent disease among the population, and if not controlled, it causes complications and irreparable damage to the eye and cause blindness. This study goal is to investigate the predictive power of multiple logistic regression model and the Artificial Neural Network Multi-layer Perceptron (MLP) in determining patients with and without diabetic...
متن کاملThe Comparison of Credit Risk between Artificial Neural Network and Logistic Regression Models in Tose-Taavon Bank in Guilan
One of the most important issues always facing banks and financial institutes is the issue of credit risk or the possibility of failure in the fulfillment of obligations by applicants who are receiving credit facilities. The considerable number of banks’ delayed loan payments all around the world shows the importance of this issue and the necessary consideration of this topic. Accordingly...
متن کاملAbdominal fat and hip fracture risk in the elderly: The Dubbo Osteoporosis Epidemiology Study
BACKGROUND Fat mass, which is a major component of body weight, is directly related to bone mineral density and reduced fracture risk. It is not known whether abdominal fat is associated with hip fracture. The present study was designed to examine the association between abdominal fat and hip fracture in women and men aged 60+ years. METHODS This was a nested case-control study with one fract...
متن کاملComparing Bivariate and Multivariate Methods in Landslide Sustainability Mapping: A Case Study of Chelchay Watershed
1- INTRODUCTION In the last decades, due to human interventions and the effect of natural factors, the occurrence of landslide increased especially in the north of Iran, where the amount of rainfall is suitable for the landslide occurrence. In order to manage and mitigate the damages caused by landslide, the potential landslide-prone areas should be identified. In landslide susceptibili...
متن کاملOriginal Contribution Opioid Use for Noncancer Pain and Risk of Fracture in Adults: A Nested Case-Control Study Using the General Practice Research Database
Opioid use has been reported to be associated with increased fracture risks. In a nested case-control study using the United Kingdom–based General Practice Research Database, we tested the hypotheses that fracture risk was associated with 1) an elevated risk of falls caused by the acute central nervous system effects of opioids including sedation and dizziness, and 2) osteoporosis caused by chr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 14 شماره
صفحات -
تاریخ انتشار 2013